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We generalize and make exact several well-known estimates concerning the over­
convergence of complex interpolating polynomials. '1;' 1986 Academic Press, Inc.

1. INTRODUCTION

Let p ~ 1 and denote by A p and Ape the set of all functions

':I:..' :r.;

I(z) = L ak zk = L ak(f)zk
k~O k~O

that are analytic in the circle Iz I < p and have singularity on Iz i = p, and
analytic in Iz I < p and continuous on Iz I = p, respectively. We set

n-I
P Il - Lif; z) = L ak+jnzk, j= 0,1, ... ,

k~O

t-I

QIl-I,lI;z)= L PIl-1,j(f;z), 1=1,2,...,
k~O

and denote by LIl-1(f; z) the Lagrange interpolating polynomial of I of
degree at most (n - 1) based on the nth roots of unity. Finally, we put

,1t.n- 1(f; z) = L n - I(f; z) - Qn - 1,/(f ; z).

Generalizing a result of Walsh [4, p. 153], Cavaretta, Sharma and Varga
[1] proved

THEOREM A. For any I E A p' P > 1, and lor any positive integer we
have, for R ~ p,

f,(R) ~f lim max 1,1,.n_l(f;z)ll!Il~R/p'+I. (l)
n~oolzl~R
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In particular, A I.n _ 1(f; z) converges to zero as n -+ 00 for every
Iz I< pl+ 1 (this is where the term "overconvergence" comes from). Our first
result is that in (I) actually the equality holds.

Let

KlR, p) = Rlpl+ 1

= 1/p l

if R?c p

if O~R<p.

THEOREM 1. If f E A p , p> 1, I is a positive integer and R> 0 then
flR) = KI(R, p).

COROLLARY 1. If l?c 1, f is analytic in an open domain containing Iz I~ 1
and fl(R) = KlR, p) forsome R> 0, p> 1 then f E A p •

For example, if we know a priori that f is holomorphic on Iz I~ 1 and if

is uniformly bounded in every closed subdomain of Iz I< pi + 1 then f is
analytic in Iz I < p. An interesting result of Szabados [3] states that this is
true if we know merely f E A 1 C (cr. also the Remark in [3]).

Problem. Is Theorem 1 true for p = 1 if we assume f E A 1 C?

Remark. For R = 0 Theorem 1 is no longer true. Indeed (cf. below)

oc·

AI.n_ 1(f;0)= L aln+(D((p_/;)-il+l)),
j~1

(/;>0)

and it may happen that every a ln = O.
After this let us focus our attention on the behaviour of J I.n _ 1(f; z) on

Izl=pl+l.Let

By Theorem 1

lim A f.;;'- 1 (f) = 1
n ~ eN

but this estimate is too rough; it does not tell anything about the con­
vergence of A I•n _ 1(f) to zero. A finer result is the following in which
¢J(n)~¢J(2n) means 1/c~¢J(2n)/¢J(n)~c, n= 1, 2,..., for some positive c.
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THEOREM 2. Let fEAp, ,0> 1, 1';31 and {<ft(n)} a positive monotonic
sequence with <ft(2n)~ rP(n). Then the two statements

and

(ii) a,,(f) = (!'(p-n<ft(n))

are equivalent.
Note that (ii) is independent of I, therefore (i) holds or not simultaneously

for all ! ';3 L

COROLLARY 2. IffEA p, ,0> 1, /';31 then

lim Ll,.n_ df; z) =0
fl- X

(2)

uniformly on Izi =p'+l (land only if anU) =o(p-n) (n -> UJ).

This solves the following problem of Szabados ([3, Problem 2J) in the
negative: Assume ,0 > 1, 1';3 1,/ E A 1 C and (2). Does this imply f E A p C? By
Corollary 1 any function fEAp'ApC with a" (/}=o(p-n) testifies the
negative answer.

COROLLARY 3. IlfEApC, ,0> 1,/';31, and Ll,.,,_lll=c(n- l
) then [he

Taylor expansion off converges uniformly on I z 1 = ,0.

COROLLARY 4. fl fEApC, ,0> 1, 1';3 L ':I.> 1 and ..1/n - 1(f) = (!(n-Xl
then the Taylor expansion off converges absolutely on Iz I= p.

Remarks 1. Using the above-mentioned result of Szabados it follows
that Corollaries 2 and 4 hold also with the assumption f E Al C instead of
fEA p.

2. The proof of Theorem 2 shows that (i) and (ii) are also equivalent to
the following: for fixed 0 < R i= ,0

uniformly on Iz I = p.

3. fEApC and Lll.tl-l(f) = IT'(n-'), u< 1 do not imply the uniform
convergence of the Taylor expansion of f on Iz I= ,0 and Li,.n_ 1(f) =
([(n-- 1) does not imply its absolute convergence on Iz I = p (cf. Corollaries 3
and 4).
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Indeed, using Theorem 2 and the change of variable z' = zip we have to
show that iff E Al C and an(f) = (9(n-") (0 < r:t. < 1) or an(f) = (9(n -I) then

need not converge uniformly or absolutely on 1z I = 1, respectively. Putting

(r~m~n)

(these are essentially the well-known Fejer polynomials) we have
ISn,m,r(z) 1~ 10 (I z 1= 1), and so the function f defined by

CD

f(z)= L n- 2S4n,4n-l,[4In-1J"](Z)
n=2

proves the first statement while

(0 < r:t. < 1)

ex,

f(z)= L akS2%"k.[nkakJ(z)
k=1

proves the second one where ak ~ 0, Lkak < 00, Lk aklog(l/ak) = 00 and
{nk} increases sufficiently rapidly.

Our next concern will be the pointwise behaviour of i1 1,n-I(f; z). Saff
and Varga [2] recently proved

THEOREM B. If f E A p' p > 1 and I ~ 1 then the sequence
{i1 I,n_I(f;Z)};;"=1 can be bounded in at most I distinct points in Izi >/+1.

A more exact result is the following one.

THEOREM 3. Let f E A p , p> 1 and l~ 1. Then

(i) lim 1.1I,n_I(f;z)/I/n= Izl/,/+1
1l-a:;.,

for all but at most I points in 1z I> p,

(ii) lim 1i1I,n_I(f;z)ll/n= 1/pl
n- 00

for all but at most (1- 1) points in 0 < Izi < p.

(iii) if {~(n)}:~1 is monotone, ~(2n)~~(n) and

(j= 1,..., 1+1)
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in some (/+1) points ZI, ...,21+1 with I'::il= ... =lzl+ll=pl+1 then
a,,(/)=0(p-"¢J(n)) and hence

,11.11-1(/; z) =@(¢J(n))

un(forrnlyon 1:::1 =pl+l.

Nate that (i), (ii) and (iii) are a certain strengthening of one half of
Theorem 1 and Theorem 2, respectively.

COROLLARY 5. If f E Ap' p> 1 and I ~ 1 then there are only t\\'o
possibilities:

(i) Iim,,~x A/II_dIz)=O uniformly on 1:::1 =pl+l, and

(ii) lim,,_ O'J ,11.11-1(/; z) = 0 in at most I points on Izl = pl+ 1.

Furthermore, by Corollary 2, either (i) or (ii) holds simultaneously for
all !~ 1.

In connection with Theorem B, Shaff and Varga [2J also proved that its
statement is the best possible one in a certain sense. Now we show that
Theorem 3 cannot be improved.

THEOREM 4. Let p> 1 and !~ 1.

(i) If ZI,'''' 2 1 are arbitrary I points with modulus greater than p then
there is a rational function f E A p with

-I' 1·< (f·-)II.11 I.:)1m tJl,I1-1 ''-j <~,
fl---i'"'X' P

j = 1, 2, ... , I.

(ii) If ZI,"" 21-1 are arbitrary (/-1) points in the ring 0< Izl <p
then there is a rational function f E A p with

j= L., 1-1.

Our proof will show that if / + 1 ::( I2 j I< pi + 2 then the function J in i i \
can be chosen to satisfy

j= 1,..., l.

This is the mentioned result of Shaff and Varga.
In his pioneering article Walsh also verified that his overconvergence

result (Theorem A)) cannot be extended to Iz I> p2. Indeed, for J(z) =
l/(p - z), {,1 1." _ Jf; z)} does not tend to zero if !z I = p2. This special result
may be considered as the appearance of the more general
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THEOREM 5. If f E A p , p> 1, I?:- 1 and f has a pole on Iz 1= p then
{AI,n -I (f; z)}:~ I can tend to zero in at most I points on Iz I= pi + I.

By Theorem 4 this is the best possible result. We obtain also that for
functions f E A p having a pole on Iz I= p always the second alternative
holds in Corollary 5.

2. PROOFS

Proof of Theorem 1. Since f E A p if and only if

lim lakl l
/
k= lip

k ~ co
(4)

we have ak =(9((p-e)-k) for every 10>0. Let R be fixed, Izl=R and if
R < p then we assume 10 > 0 so small that R < P - 10 be statisfied, as well.
Then we obtain by a formula of Szabados [3] the estimate

11-1 00

AI,n _ I (f; z) = L L ak+ jn Zk
k~Oj~1

= :~~ aln+kzk+@C~~ IZlk(p_e)(!-lln-k) (5)

n-I , {(R/(p-e)/+2 t if R?:-p
= k~O aln

+k
zk

+(9 (l/(p-e)/+I)n if O<R<p.

Whence

by which flR) ~ KI(R, P - e). Since here 10 > 0 was arbitrary, we obtain
fl(R) ~ KlR, p).

To prove the opposite inequality let first R?:- p, and let 10 > 0 be so small
that

(p_e)-(!+2)<p(!+I)

is satisfied. If m=ln+k, where n-I-1 ~k~n-l; then by (5)

1

1 f AI,n_I(f;Z) I (1 ( R )")
laml = 2ni Izl~R Zk+1 dz +@ R k+1 (p_e)/+2

~ K(f/(R) + lOt R-k+ ((p - e) -(1+2))

(6)
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and seeing that k~ n, n(l + 1) ~m we obtain from (4) and (6) that

fl(R)+8~R lim {la",I-(!((p-c)-ilt-2 j")lln
n ....... ·x,

=R( lim la II ""1"""= R/Olt-I,n, ..., '
n --+ IX.

which proves

179

For O<R<p we obtain similarly from (5) that for O;(k<l. m=ln+k

Ia", 1;( KR -k(j~(R)+ 8)" + cUp - e) 1/+ 11/1R -k)

by which

fAR) ~ lim I am 1
111 = lipl

'1- 'x

and the proof is complete.
Corollary 1 immediately follows from Theorem 1 because "AR, p) i=

"I(R, p') if p i= p'.

Proof of Theorem 2. If {r/J(n)} is monotone and ¢;(2n) ~ r/J{n) then there
is a constant c with (l/c)n-c<r/J(n)<cn'. Hence, following the con­
sideration of the preceding proof we obtain that a,Jfl = (! (p -/11'(n))
implies

n-l

.J t. II -
1
If):( Kr/J(n) I p -1111 +klpil+ 11k + o(r/J(n));( K¢>(n)

k~O

and conversely, J I.II - 1(f) = (!(r/J(n)) implies

lam 1;( Kp -kilt- l lr/J(n) + o(¢>(n) p -11+ 1 )n);( Kp -mrj;(m)

(m=ln+k, n-l-l;(k;(n-l)

and the proof is complete.
If G,,(f)=a(p-") then there is a sequence {!j?ln)}, ¢;(2n)~rjJ(n)

monotonically decreasing to 0 such that IGnU)1 ;( Kp -llrjJ(n). By
Theorem 2, this implies J 1,,, _ 1(f) = o( I) (n ---+x,), and the first part of
Corollary 2 is proved. The necessity of Gn(f) = alp -n) can be similarly
proved.

Corollary 4 directly follows from Theorem 2.
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If we assume Al n_ 1(f) = ([!(n -I), then we have, by Theorem 2, Gn(f) =
C0(n -I). On the other hand, f E A p C implies that the (C, 1)-means of the
Taylor series of f converge uniformly on IZ I = P to f Thus, Corollary 3
follows from the Tauberian theorem of Hardy (see [5, p. 78]).

Proof of Theorem 3. Let first Iz I> p. By (5) we have for sufficiently
small e>0

h(z) =def AI,,, _ I (f; z) - Zl AI,,,(f; z)

+ m((lz I(p - e)-U+2))")

I

= - I GU+I)n+kZ"+k + m((p _e)-I" + (lzl(p _e)-(l+2))")
k~O

I (( I_I )")_ _ '7 fl + k 11 _"__- I Gu+ I)n+k~ + c: 1+ I ']
k~O P

where 1] is a positive number.
If we assume

lim IAI,,,_I(f;zi)ll/n<lzil/pl+l,
fl--X

j= 1,..., 1+ 1

for ZI,'''' ZI+ I with Izll, .." IZl+ 11> P then we have also

lim Ih(z) III" < Iz;l/pl+ 1,
fl-OC>

j= 1,.." 1+ 1

and so, by the above estimate on 11, there are number 1] 1 > 0, K I ~ 1 and
{3i,n, n= 1, 2, ... , 1~j~/+ 1, such that

and

l~j~I+1.
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Solving this system of equations for au + l)n + k we obtain

1+ 1
- '1\ (k) _-n f3

au + l)n + k - L. Cj '" j j,n
j=1

with appropriate constants cjk) independent of 11, by which

lim la 11/(1l+ 1)fl+k l
({+ l)n+k

Il-'X,

(
_, (1 '11 ,)n'(U+1 l11+k l

)
~K1 hm I+T----

,11~X P maxlzjl

< lip
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independently of 0 ~ k ~ I, which contradicts (4), This contradiction proves
statement (i).

In the proof of (ii), one can argue similarly using the estimate

I-I

h(z)= L al
fl
+k:/+(i"((lzl(p-e)-U+ll)"+(p-e)-il+ 1 )1Z)

k ~o

The proof of (iii) is almost the same as that of (i) (see also the proof of
Theorem 2).

Finally, Corollary 5 follows from assertion (iii) exactly as Corollary 2
does from Theorem 2.

Proof of Theorem 4. Let us consider the system of equations

I

L aU+llm+kZ7=0,
k=O

j= 1,2,... , I (7 )

where a u + l)m +k are the unknowns and m = 0, 1,.... Solving this for
au + I)m + I'"'' a (I + I)m + I we obtain that there are numbers Ck (independent of
m) with

Tn = 1, 2, ..., k = 1,... , !.

Let Co = 1 and

Then f is a rational function and f E A p (f has at least one pole on Iz I = p ).
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Writing the denominator of f in the form

I (~)(I+ I)m

m~O p

we obtain that

(f) - -(1+ I)m
GU+l)m+k -p Ck

and thus these numbers G(l+ I)m+k = G u+ I)m+k(f) satisfy (7). For any n > 0
let rand s be determined by In + s = (l + 1)r, 0:( s < 1+1. Using (7) we
obtain for n > O.

This and (5) yield for every e> 0

j= 1, 2, ..., I

and putting here an E > 0 for which (6) is satisfied we get the desired
relation (3 ).

The proof of (ii) is similar, only one has to solve the system of equations
Co = 1

j=1, ...,I-l

for Co,"" CI _ I and then put

The proof is complete.

Proof of Theorem 5. Let Zo, IZo I = p, be a pole of f This means that f
can be extended to a neighborhood of Zo such that the extended function
has a pole at Zo0 Then

lim If(z)llz-zol >0.
Z -----1" ZQ

1=1 <p

(8)
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Now if the conclusion of the theorem does not hold then, by Corollary 5
and Theorem 2, alief) = O(p-Il) (n -+ Cf)), and so

, ex \

lim If(r'=-o)llrzo-zol=lzol lim (I o((rp/p)"l) (l-r)
r-+l-O r--l-l-O\n=O /

=o( lim O/O-r))(1-r)\\
r-l-0 /

=0(1 )

contradicting (8).
Our proofs are complete.
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