JOURNAL OF APPROXIMATION THEORY 47, 173-183 (1986)

Quantitative Results in the Theory of Overconvergence of Complex Interpolating Polynomials

V. Тотік

Bolyai Institute, Szeged, Aradi V. tere 1, 6720 Hungary Communicated by Oved Shisha

Received January 10, 1983

We generalize and make exact several well-known estimates concerning the overconvergence of complex interpolating polynomials. © 1986 Academic Press, Inc.

1. INTRODUCTION

Let $\rho \ge 1$ and denote by A_{ρ} and $A_{\rho}C$ the set of all functions

$$f(z) = \sum_{k=0}^{\infty} a_k z^k = \sum_{k=0}^{\infty} a_k(f) z^k$$

that are analytic in the circle $|z| < \rho$ and have singularity on $|z| = \rho$, and analytic in $|z| < \rho$ and continuous on $|z| = \rho$, respectively. We set

$$P_{n-1,j}(f;z) = \sum_{k=0}^{n-1} a_{k+jn} z^k, \qquad j = 0, 1, ...,$$
$$Q_{n-1,l}(f;z) = \sum_{k=0}^{l-1} P_{n-1,j}(f;z), \qquad l = 1, 2, ...,$$

and denote by $L_{n-1}(f; z)$ the Lagrange interpolating polynomial of f of degree at most (n-1) based on the *n*th roots of unity. Finally, we put

$$\Delta_{l,n-1}(f;z) = L_{n-1}(f;z) - Q_{n-1,l}(f;z).$$

Generalizing a result of Walsh [4, p. 153], Cavaretta, Sharma and Varga [1] proved

THEOREM A. For any $f \in A_{\rho}$, $\rho > 1$, and for any positive integer l we have, for $R \ge \rho$,

$$f_{l}(R) \stackrel{\text{def}}{=} \lim_{n \to \infty} \max_{|z|=R} |\mathcal{A}_{l,n-1}(f;z)|^{1/n} \leqslant R/\rho^{l+1}.$$
(1)

0021-9045/86 \$3.00 Copyright © 1986 by Academic Press, Inc. In particular, $\Delta_{l,n-1}(f;z)$ converges to zero as $n \to \infty$ for every $|z| < \rho^{l+1}$ (this is where the term "overconvergence" comes from). Our first result is that in (1) actually the equality holds.

Let

$$\kappa_{l}(R, \rho) = R/\rho^{l+1} \quad \text{if} \quad R \ge \rho$$
$$= 1/\rho^{l} \quad \text{if} \quad 0 \le R < \rho.$$

THEOREM 1. If $f \in A_{\rho}$, $\rho > 1$, *l* is a positive integer and R > 0 then $f_l(R) = \kappa_l(R, \rho)$.

COROLLARY 1. If $l \ge 1$, f is analytic in an open domain containing $|z| \le 1$ and $f_l(R) = \kappa_l(R, \rho)$ for some R > 0, $\rho > 1$ then $f \in A_\rho$.

For example, if we know a priori that f is holomorphic on $|z| \leq 1$ and if

$$L_{n-1}(f;z) - Q_{n-1,l}(f;z)$$

is uniformly bounded in every closed subdomain of $|z| < \rho^{\ell+1}$ then f is analytic in $|z| < \rho$. An interesting result of Szabados [3] states that this is true if we know merely $f \in A_1 C$ (cf. also the Remark in [3]).

Problem. Is Theorem 1 true for $\rho = 1$ if we assume $f \in A_1 C$?

Remark. For R = 0 Theorem 1 is no longer true. Indeed (cf. below)

$$\Delta_{l,n-1}(f;0) = \sum_{j=l}^{\infty} a_{ln} + \mathcal{O}((\rho-\varepsilon)^{-(l+1)}), \qquad (\varepsilon > 0)$$

and it may happen that every $a_{ln} = 0$.

After this let us focus our attention on the behaviour of $\Delta_{l,n-1}(f;z)$ on $|z| = \rho^{l+1}$. Let

$$\begin{split} \mathcal{\Delta}_{l,n-1}(f) &= \max_{|z| = \rho^{l+1}} |\mathcal{\Delta}_{l,n-1}(f;z)| \\ &= \max_{|z| = \rho^{l+1}} |L_{n-1}(f;z) - \mathcal{Q}_{n-1,l}(f;z)|. \end{split}$$

By Theorem 1

$$\overline{\lim_{n \to \infty}} \, \Delta_{l,n-1}^{1/n}(f) = 1$$

but this estimate is too rough; it does not tell anything about the convergence of $\Delta_{l,n-1}(f)$ to zero. A finer result is the following in which $\phi(n) \sim \phi(2n)$ means $1/c \leq \phi(2n)/\phi(n) \leq c$, n = 1, 2,..., for some positive c.

THEOREM 2. Let $f \in A_{\rho}$, $\rho > 1$, $l \ge 1$ and $\{\phi(n)\}$ a positive monotonic sequence with $\phi(2n) \sim \phi(n)$. Then the two statements

(i)
$$\Delta_{l,n-1}(f) = \mathcal{C}(\phi(n))$$

and

(ii)
$$a_n(f) = \mathcal{C}(\rho^{-n}\phi(n))$$

are equivalent.

Note that (ii) is independent of l, therefore (i) holds or not simultaneously for all $l \ge 1$.

COROLLARY 2. If $f \in A_{\rho}$, $\rho > 1$, $l \ge 1$ then

$$\lim_{n \to \infty} \Delta_{l,n-1}(f;z) = 0 \tag{2}$$

uniformly on $|z| = \rho^{l+1}$ if and only if $a_n(f) = o(\rho^{-n}) \ (n \to \infty)$.

This solves the following problem of Szabados ([3, Problem 2]) in the negative: Assume $\rho > 1$, $l \ge 1$, $f \in A_1C$ and (2). Does this imply $f \in A_\rho C$? By Corollary 1 any function $f \in A_\rho \setminus A_\rho C$ with $a_n(f) = o(\rho^{-n})$ testifies the negative answer.

COROLLARY 3. If $f \in A_{\rho}C$, $\rho > 1$, $l \ge 1$, and $\Delta_{l,n-1}(f) = O(n^{-1})$ then the Taylor expansion of f converges uniformly on $|z| = \rho$.

COROLLARY 4. If $f \in A_{\rho}C$, $\rho > 1$, $l \ge 1$, $\alpha > 1$ and $\Delta_{l,n-1}(f) = \mathcal{O}(n^{-\alpha})$ then the Taylor expansion of f converges absolutely on $|z| = \rho$.

Remarks 1. Using the above-mentioned result of Szabados it follows that Corollaries 2 and 4 hold also with the assumption $f \in A_1C$ instead of $f \in A_p$.

2. The proof of Theorem 2 shows that (i) and (ii) are also equivalent to the following: for fixed $0 < R \neq \rho$

$$\Delta_{l,n-1}(f;z) = \mathcal{O}((\kappa_l(R,\rho))^n \phi(n))$$

uniformly on $|z| = \rho$.

3. $f \in A_{\rho}C$ and $\Delta_{l,n-1}(f) = \mathcal{O}(n^{-\alpha})$, $\alpha < 1$ do not imply the uniform convergence of the Taylor expansion of f on $|z| = \rho$ and $\Delta_{l,n-1}(f) = \mathcal{O}(n^{-1})$ does not imply its absolute convergence on $|z| = \rho$ (cf. Corollaries 3 and 4).

Indeed, using Theorem 2 and the change of variable $z' = z/\rho$ we have to show that if $f \in A_1 C$ and $a_n(f) = \mathcal{O}(n^{-\alpha})$ ($0 < \alpha < 1$) or $a_n(f) = \mathcal{O}(n^{-1})$ then

$$\sum_{n=0}^{\infty} a_n(f) z^n$$

need not converge uniformly or absolutely on |z| = 1, respectively. Putting

$$S_{n,m,r}(z) = \sum_{k=r}^{m} \frac{1}{k} (z^{n+k} - z^{n-k}) \qquad (r \le m \le n)$$

(these are essentially the well-known Fejér polynomials) we have $|S_{n,m,r}(z)| \leq 10$ (|z| = 1), and so the function f defined by

$$f(z) = \sum_{n=2}^{\infty} n^{-2} S_{4^n, 4^{n-1}, [4^{(n-1)\alpha}]}(z) \qquad (0 < \alpha < 1)$$

proves the first statement while

$$f(z) = \sum_{k=1}^{\infty} a_k S_{2n_k, n_k, [n_k a_k]}(z)$$

proves the second one where $a_k \ge 0$, $\sum_k a_k < \infty$, $\sum_k a_k \log(1/a_k) = \infty$ and $\{n_k\}$ increases sufficiently rapidly.

Our next concern will be the pointwise behaviour of $\Delta_{l,n-1}(f; z)$. Saff and Varga [2] recently proved

THEOREM B. If $f \in A_{\rho}$, $\rho > 1$ and $l \ge 1$ then the sequence $\{A_{l,n-1}(f;z)\}_{n=1}^{\infty}$ can be bounded in at most l distinct points in $|z| > \rho^{l+1}$.

A more exact result is the following one.

THEOREM 3. Let $f \in A_{\rho}$, $\rho > 1$ and $l \ge 1$. Then

(i)
$$\overline{\lim}_{n \to \infty} |\Delta_{l,n-1}(f;z)|^{1/n} = |z|/\rho^{l+1}$$

for all but at most l points in $|z| > \rho$,

(ii)
$$\overline{\lim_{n \to \infty}} |\Delta_{l,n-1}(f;z)|^{1/n} = 1/\rho^{l}$$

for all but at most (l-1) points in $0 < |z| < \rho$.

(iii) if $\{\phi(n)\}_{n=1}^{\infty}$ is monotone, $\phi(2n) \sim \phi(n)$ and

$$\Delta_{l,n-1}(f;z_j) = \mathcal{O}(\phi(n)) \qquad (j = 1, ..., l+1)$$

176

in some (l+1) points $z_1,..., z_{l+1}$ with $|z_1| = \cdots = |z_{l+1}| = \rho^{l+1}$ then $a_n(f) = \mathcal{O}(\rho^{-n}\phi(n))$ and hence

$$\Delta_{l,n-1}(f;z) = \mathcal{O}(\phi(n))$$

uniformly on $|z| = \rho^{\ell+1}$.

Note that (i), (ii) and (iii) are a certain strengthening of one half of Theorem 1 and Theorem 2, respectively.

COROLLARY 5. If $f \in A_{\rho}$, $\rho > 1$ and $l \ge 1$ then there are only two possibilities:

(i)
$$\lim_{n \to \infty} \Delta_{ln-1}(f; z) = 0$$
 uniformly on $|z| = \rho^{l+1}$, and

(ii) $\lim_{n \to \infty} \Delta_{l,n-1}(f;z) = 0$ in at most l points on $|z| = \rho^{l+1}$.

Furthermore, by Corollary 2, either (i) or (ii) holds simultaneously for all $l \ge 1$.

In connection with Theorem B, Shaff and Varga [2] also proved that its statement is the best possible one in a certain sense. Now we show that Theorem 3 cannot be improved.

THEOREM 4. Let $\rho > 1$ and $l \ge 1$.

(i) If $z_1,..., z_l$ are arbitrary l points with modulus greater than ρ then there is a rational function $f \in A_{\rho}$ with

$$\overline{\lim_{n \to \infty}} |\mathcal{A}_{l,n-1}(f;z_j)|^{1,n} < \frac{|z_j|}{\rho^{l+1}}, \qquad j = 1, 2, ..., l.$$
(3)

(ii) If $z_1,..., z_{l-1}$ are arbitrary (l-1) points in the ring $0 < |z| < \rho$ then there is a rational function $f \in A_\rho$ with

$$\overline{\lim_{n \to \infty}} |\Delta_{l,n-1}(f;z_j)|^{1/n} < \frac{1}{\rho^{l}}, \qquad j = 1, ..., l-1.$$

Our proof will show that if $\rho^{l+1} \leq |z_j| < \rho^{l+2}$ then the function f in (i) can be chosen to satisfy

$$\Delta_{l,n-1}(f;z_i) = o(1), \qquad j = 1,..., l.$$

This is the mentioned result of Shaff and Varga.

In his pioneering article Walsh also verified that his overconvergence result (Theorem A)) cannot be extended to $|z| > \rho^2$. Indeed, for $f(z) = 1/(\rho - z)$, $\{\Delta_{1,n-1}(f; z)\}$ does not tend to zero if $|z| = \rho^2$. This special result may be considered as the appearance of the more general

V. TOTIK

THEOREM 5. If $f \in A_{\rho}$, $\rho > 1$, $l \ge 1$ and f has a pole on $|z| = \rho$ then $\{\Delta_{l,n-1}(f;z)\}_{n=1}^{\infty}$ can tend to zero in at most l points on $|z| = \rho^{l+1}$.

By Theorem 4 this is the best possible result. We obtain also that for functions $f \in A_{\rho}$ having a pole on $|z| = \rho$ always the second alternative holds in Corollary 5.

2. Proofs

Proof of Theorem 1. Since $f \in A_o$ if and only if

$$\overline{\lim_{k \to \infty}} |a_k|^{1/k} = 1/\rho \tag{4}$$

we have $a_k = \mathcal{O}((\rho - \varepsilon)^{-k})$ for every $\varepsilon > 0$. Let R be fixed, |z| = R and if $R < \rho$ then we assume $\varepsilon > 0$ so small that $R < \rho - \varepsilon$ be statisfied, as well. Then we obtain by a formula of Szabados [3] the estimate

$$\begin{split} \mathcal{A}_{l,n-1}(f;z) &= \sum_{k=0}^{n-1} \sum_{j=l}^{\infty} a_{k+jn} z^{k} \\ &= \sum_{k=0}^{n-1} a_{ln+k} z^{k} + \mathcal{O}\left(\sum_{k=0}^{n-1} |z|^{k} (\rho-\varepsilon)^{(l-1)n-k}\right) \\ &= \sum_{k=0}^{n-1} a_{ln+k} z^{k} + \mathcal{O}\left\{ \frac{(R/(\rho-\varepsilon)^{l+2})^{n} & \text{if } R \ge \rho}{(1/(\rho-\varepsilon)^{l+1})^{n} & \text{if } 0 < R < \rho. \end{cases}$$
(5)

Whence

$$\begin{split} |\mathcal{\Delta}_{l,n-1}(f;z)| &\leq K \sum_{k=0}^{n-1} R^k (\rho-\varepsilon)^{ln+k} + \mathcal{O} \begin{cases} (R/(\rho-\varepsilon)^{l+2})^n \\ (1/(\rho-\varepsilon)^{l+1})^n \end{cases} \\ &\leq K \begin{cases} (R/(\rho-\varepsilon)^{l+1})^n & \text{if } R \geq \rho \\ (1/(\rho-\varepsilon)^l)^n & \text{if } 0 < R < \rho \end{cases} \end{split}$$

by which $f_l(R) \leq \kappa_l(R, \rho - \varepsilon)$. Since here $\varepsilon > 0$ was arbitrary, we obtain $f_l(R) \leq \kappa_l(R, \rho)$.

To prove the opposite inequality let first $R \ge \rho$, and let $\varepsilon > 0$ be so small that

$$(\rho - \varepsilon)^{-(l+2)} < \rho^{(l+1)}$$
 (6)

is satisfied. If m = ln + k, where $n - l - 1 \le k \le n - 1$; then by (5)

$$|a_m| = \left| \frac{1}{2\pi i} \int_{|z| = R} \frac{\Delta_{l,n-1}(f;z)}{z^{k+1}} dz \right| + \mathcal{O}\left(\frac{1}{R^{k+1}} \left(\frac{R}{(\rho-\varepsilon)^{l+2}}\right)^n\right)$$
$$\leq K(f_l(R) + \varepsilon)^n R^{-k} + ((\rho-\varepsilon)^{-(l+2)})$$

and seeing that $k \sim n$, $n(l+1) \sim m$ we obtain from (4) and (6) that

$$f_{l}(R) + \varepsilon \ge R \lim_{n \to \infty} \{ |a_{m}| - \mathcal{C}((\rho - \varepsilon)^{-(l+2)n}) \}^{1:n}$$
$$= R \left(\lim_{n \to \infty} |a_{m}|^{1:m} \right)^{m:n} = R/\rho^{l+1},$$

which proves

 $f_l(R) \ge \kappa_l(R, \rho).$

For $0 < R < \rho$ we obtain similarly from (5) that for $0 \le k < l$, m = ln + k

$$|a_m| \leq KR^{-k} (f_l(R) + \varepsilon)^n + \mathcal{C}((\rho - \varepsilon)^{-(l+1)n} R^{-k})$$

by which

$$f_l(R) \ge \overline{\lim_{n \to \infty}} |a_m|^{1/n} = 1/\rho^l$$

and the proof is complete.

Corollary 1 immediately follows from Theorem 1 because $\kappa_l(R, \rho) \neq \kappa_l(R, \rho')$ if $\rho \neq \rho'$.

Proof of Theorem 2. If $\{\phi(n)\}$ is monotone and $\phi(2n) \sim \phi(n)$ then there is a constant *c* with $(1/c) n^{-c} < \phi(n) < cn^c$. Hence, following the consideration of the preceding proof we obtain that $a_n(f) = \mathcal{C}(\rho^{-n}\phi(n))$ implies

$$\Delta_{l,n-1}(f) \leq K\phi(n) \sum_{k=0}^{n-1} \rho^{-(ln+k)} \rho^{(l+1)k} + o(\phi(n)) \leq K\phi(n)$$

and conversely, $\Delta_{l,n-1}(f) = \mathcal{C}(\phi(n))$ implies

$$|a_m| \le K\rho^{-k(l+1)}\phi(n) + o(\phi(n) \rho^{-(l+1)n}) \le K\rho^{-m}\phi(m)$$

(m = ln + k, n - l - 1 \le k \le n - 1)

and the proof is complete.

If $a_n(f) = o(\rho^{-n})$ then there is a sequence $\{\phi(n)\}, \phi(2n) \sim \phi(n)$ monotonically decreasing to 0 such that $|a_n(f)| \leq K\rho^{-n}\phi(n)$. By Theorem 2, this implies $\Delta_{l,n-1}(f) = o(1)$ $(n \to \infty)$, and the first part of Corollary 2 is proved. The necessity of $a_n(f) = o(\rho^{-n})$ can be similarly proved.

Corollary 4 directly follows from Theorem 2.

V. TOTIK

If we assume $\Delta_{l,n-1}(f) = \mathcal{O}(n^{-1})$, then we have, by Theorem 2, $a_n(f) = \mathcal{O}(n^{-1})$. On the other hand, $f \in A_{\rho}C$ implies that the (C, 1)-means of the Taylor series of f converge uniformly on $|z| = \rho$ to f. Thus, Corollary 3 follows from the Tauberian theorem of Hardy (see [5, p. 78]).

Proof of Theorem 3. Let first $|z| > \rho$. By (5) we have for sufficiently small $\varepsilon > 0$

$$h(z) = {}^{def} \Delta_{l,n-1}(f;z) - z^{l} \Delta_{l,n}(f;z)$$

$$= \sum_{k=0}^{l-1} a_{ln+k} z^{k} - \sum_{k=0}^{l} a_{(l+1)n+k} z^{n+k}$$

$$+ \mathcal{O}((|z|(\rho-\varepsilon)^{-(l+2)})^{n})$$

$$= -\sum_{k=0}^{l} a_{(l+1)n+k} z^{n+k} + \mathcal{O}((\rho-\varepsilon)^{-ln} + (|z|(\rho-\varepsilon)^{-(l+2)})^{n})$$

$$= -\sum_{k=0}^{l} a_{(l+1)n+k} z^{n+k} + \mathcal{O}\left(\left(\frac{|z|}{\rho^{l+1}} - \eta\right)^{n}\right)$$

where η is a positive number.

If we assume

$$\lim_{n \to \infty} |\Delta_{l,n-1}(f;z_j)|^{1/n} < |z_j|/\rho^{l+1}, \qquad j = 1, ..., l+1$$

for $z_1, ..., z_{l+1}$ with $|z_1|, ..., |z_{l+1}| > \rho$ then we have also

$$\overline{\lim_{n \to \infty}} |h(z_j)|^{1/n} < |z_j|/\rho^{l+1}, \qquad j = 1, ..., l+1$$

and so, by the above estimate on h, there are number $\eta_1 > 0$, $K_1 \ge 1$ and $\beta_{j,n}$, $n = 1, 2, ..., 1 \le j \le l+1$, such that

$$|\beta_{j,n}| < K_1 \left(\frac{|z_j|}{\rho^{\ell+1}} - \eta_1\right)^n$$

and

$$\sum_{k=0}^{l} a_{(l+1)n+k} z_{j}^{k} = z_{j}^{-n} \beta_{j,n}, \qquad 1 \le j \le l+1.$$

180

Solving this system of equations for $a_{(l+1)n+k}$ we obtain

$$a_{(l+1)n+k} = \sum_{j=1}^{l+1} c_j^{(k)} z_j^{-n} \beta_{j,n}$$

with appropriate constants $c_i^{(k)}$ independent of *n*, by which

$$\begin{split} \overline{\lim_{n \to \infty}} & \|a_{(l+1)n+k}\|^{1/((l+1)n+k)} \\ & \leqslant K_1 \left(\overline{\lim_{n \to \infty}} \left(\frac{1}{\rho^{l+1}} - \frac{\eta_1}{\max |z_j|} \right)^{n/((l+1)n+k)} \right) \\ & < 1/\rho \end{split}$$

independently of $0 \le k \le l$, which contradicts (4). This contradiction proves statement (i).

In the proof of (ii), one can argue similarly using the estimate

$$h(z) = \sum_{k=0}^{l-1} a_{ln+k} z^k + \mathcal{C}((|z|(\rho-\varepsilon)^{-(l+1)})^n + (\rho-\varepsilon)^{-(l+1)n})$$
$$= \sum_{k=0}^{l-1} a_{ln+k} z^k + \mathcal{C}\left(\left(\frac{1}{\rho^l} - \eta\right)^n\right).$$

The proof of (iii) is almost the same as that of (i) (see also the proof of Theorem 2).

Finally, Corollary 5 follows from assertion (iii) exactly as Corollary 2 does from Theorem 2.

Proof of Theorem 4. Let us consider the system of equations

$$\sum_{k=0}^{l} a_{(l+1)m+k} z_j^k = 0, \qquad j = 1, 2, ..., l$$
(7)

where $a_{(l+1)m+k}$ are the unknowns and m=0, 1,... Solving this for $a_{(l+1)m+1},...,a_{(l+1)m+l}$ we obtain that there are numbers c_k (independent of m) with

$$a_{(l+1)m+k} = c_k a_{(l+1)m}, \qquad m = 1, 2, ..., k = 1, ..., l.$$

Let $c_0 = 1$ and

$$f(z) = \left(\sum_{k=0}^{l} c_k z^k\right) / \left(1 - \left(\frac{z}{\rho}\right)^{l+1}\right).$$

Then f is a rational function and $f \in A_{\rho}$ (f has at least one pole on $|z| = \rho$).

Writing the denominator of f in the form

$$\sum_{m=0}^{\infty} \left(\frac{z}{\rho}\right)^{(l+1)m}$$

we obtain that

$$a_{(l+1)m+k}(f) = \rho^{-(l+1)m}c_k$$

and thus these numbers $a_{(l+1)m+k} = a_{(l+1)m+k}(f)$ satisfy (7). For any n > 0 let r and s be determined by ln + s = (l+1)r, $0 \le s < l+1$. Using (7) we obtain for n > 0.

$$\sum_{k=0}^{n-1} a_{ln+k} z_j^k = \sum_{k=0}^{s-1} a_{ln+k} z_j^k + \sum_{m=r}^{n-1} z_j^{(l+1)m-ln} \sum_{k=0}^l a_{(l+1)m+k} z_j^k$$
$$= \sum_{k=0}^{s-1} a_{ln+k} z_j^k = \mathcal{O}(\rho^{-ln}).$$

This and (5) yield for every $\varepsilon > 0$

$$\Delta_{l,n-1}(f;z_j) = \mathcal{O}(\rho^{-ln} + (|z_j|/(\rho-\varepsilon)^{l+2})^n), \qquad j = 1, 2, ..., l$$

and putting here an $\epsilon > 0$ for which (6) is satisfied we get the desired relation (3).

The proof of (ii) is similar, only one has to solve the system of equations $c_0 = 1$

$$\sum_{k=0}^{l-1} c_k z_j^k = 0, \qquad j = 1, \dots, l-1$$

for $c_0, ..., c_{l-1}$ and then put

$$f(z) = \left(\sum_{k=0}^{l-1} c_k z^k\right) / \left(1 - \left(\frac{z}{\rho}\right)^l\right).$$

The proof is complete.

Proof of Theorem 5. Let z_0 , $|z_0| = \rho$, be a pole of f. This means that f can be extended to a neighborhood of z_0 such that the extended function has a pole at z_0 . Then

$$\lim_{\substack{z \to z_0 \\ |z| < \rho}} |f(z)| |z - z_0| > 0.$$
(8)

Now if the conclusion of the theorem does not hold then, by Corollary 5 and Theorem 2, $a_n(f) = o(\rho^{-n})$ $(n \to \infty)$, and so

$$\lim_{r \to 1-0} |f(rz_0)| |rz_0 - z_0| = |z_0| \lim_{r \to 1-0} \left(\sum_{n=0}^{\infty} o((r\rho/\rho)^n) \right) (1-r)$$
$$= o\left(\lim_{r \to 1-0} (1/(1-r))(1-r) \right)$$
$$= o(1)$$

contradicting (8).

Our proofs are complete.

References

- 1. A. S. CAVARETTA, JR., A. SHARMA, AND R. S. VARGA, Interpolation in the roots of unity: An extension of a theorem of J. L. Walsh, *Resultate Math.* 3 (1981), 155-191.
- 2. E. B. SAFF AND R. S. VARGA, A note on the sharpness of J. L. Walsh's theorem and its extensions for interpolation in the roots of unity, *Studia Sci. Math. Hungar.* **41** (1983), 371-377.
- 3. J. SZABADOS, Converse results in the theory of overconvergence of complex interpolating polynomials, *Analysis* 2 (1982), 267–278.
- 4. J. L. WALSH, "Interpolation and Approximation by Rational Functions in the Complex Domain," American Mathematical Society Colloquium Publications, Volume XX, 5th ed., *Amer. Math. Soc.*, Providence, R.I., 1969.
- 5. A. ZYGMUND, "Trigonometric Series I," Cambridge Univ. Press, Cambridge, 1959.